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Dynamics of phase separation in mesomorphic mixtures 
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Parc Valrose, 06108 Nice Cedex 2, France 

and P. MAISSA 
Institut Non Linkaire de Nice, UMR 129 

1361 route des Lucioles, 06560 Valbonne, France 

(Received 5 August 1994; in final form 9 November 1994; accepted 18 November 1994) 

We describe the dynamics of phase separation and transition processes, in binary mesomorphic 
mixtures with the help of a system of two coupled partial derivative equations. We emphasize, 
both analytically and numerically, that, depending on the regions of the phase diagram, the 
dynamical behaviour may result either from a two step process (first the phase transition, then 
the phase separation) or from a process showing salient features of the Cahn-Hilliard spinodal 
decomposition (bicontinuous periodic networks in the transient stages). The dynamics of 
evolution of the domain patterns are illustrated with the help of numerical simulations in which 
homeotropic and planar anchorages are visualized. 

1. Introduction 
Studies on mesomorphic materials (small molecules or 

polymer liquid crystals) have attracted great interest 
(experimental and theoretical) during these last years. It 
often happens that these materials, to be efficiently used, 
must be diluted in a solvent or mixed with a conventional 
(non-mesomorphic) polymer. While the dynamics of 
phase separation of isotropic fluid (small molecules or 
polymers) mixtures have been extensively studied both 
experimentally and theoretically [ 1-41, the behaviour of 
mesomorphic blends is relatively less well known, 
although some observations on phase separation in 
nematic solutions have been recently made [5-91 and 
theoretical models proposed [lo, 11,121. 

Then, we have systems in which there is a coupling 
between phase separation and phase transition processes. 
The former is theoretically described by a scalar conserva- 
tive order parameter 4 (concentration of one of the two 
species) solution of a Cahn-Hilliard non-linear partial 
derivative equation, while the second one is depicted by 
a scalar non-conservative orientationdl order parameter S 
solution of a Ginzburg-Landau non-linear partial deriva- 
tive equation. S illustrates the degree of orientation of the 
molecules with respect to the most favourable direction of 
the medium-the director, which is rendered uniform in the 
whole sample by application, for example, of a uniform 
magnetic field. 

*Author for correspondence. 

With the help of a free energy formulation and taking 
into account the effects of concentration and orientation, 
together with their spatial variations, we derive the two 
coupled dynamical equations describing this system and 
we give its qualitative behaviour at shorter and longer 
times by using numerical simulations. 

2. Theory 
2.1. Dynamical equations 

We are interested in mixtures with no more than one 
mesomorphic component, which may be a small molecule 
liquid crystal or a polymeric liquid crystal. As for pure 
mesomorphic compounds or non-mesomorphic binary 
mixtures (for example, conventional polymers, simple 
liquids . . . ), this system can reach a metastable or unstable 
zone depending on the temperature and the concentration 
at which the experiment is prepared. The system is out of 
equilibrium and evolves towards a most favourable 
thermodynamical state. We suppose that this evolution is 
governed by the variations in the free energy, which, in the 
case of two order parameters and keeping in mind the 
spatial inhomogeneities, is [ 131 

+ K3 2 ( f i  - V(4S)I2) dr 

where K1, K2, K3 are phenomenological coefficients ( K I  is 
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830 Y. Lansac et al. 

related to a translational diffusion coefficient and is always 
positive, while K2 and K3 are related to orientational 
diffusion coefficients such that K2 > 0 if C l V S  or 
K2 -1 K3 > 0 if ri/JVS [ 141) and f ( d ) ,  S) is the homogeneous 
free energy density which permits us to define the various 
phases present as a function of concentration and 
temperature [15] (phase diagram, figure 2), d )  is the 
volume concentration of the mesomorphic component and 
S is the orientational order parameter (estimated with 
respect to the director which is uniform in the sample). We 
have 

# 
LA 

+ - ((Ad)2 + Dd))S2 - B(#S)3 + C(#S)4) (2) 

where Li( i = A ,  R )  are the degrees of polymerization of the 
semi-flexible macromolecules (L, = 1 in the case of simple 
liquids) and their rigidity is expressed by the persistence 
length q, which is a measure of how far a polymeric chain 
persists in a given direction [16]. In the elastic chain model 
[ 13, 171, q is related to the elastic energy K of the chain by 
the relation q = 2Bti (with p = l/kBT, ke being the 
Boltzmann constant). 

'The coefficients A, B, C,  D take into account the effects 
of temperature and rigidity. 

We recover, in the first part of this expression, a Flory 
type free energy [ 181 describing a non-mesomorphic 
mixture, 1 being the Flory mean interaction parameter 
(repulsive). 

The phenomenological dynamical equations describing 
the time evolutions of the two order parameters are 
of  the Ginzburg-Landau type (non-conservative order 
parameter S )  and the Cahn-Hilliard type (conservative 
order parameter q5), respectively [4, 191 

and 

(4) 

The sample is taken to be sufficiently thin in the 2 
direction to assume that the order parameters are constant 
along this direction. Then, in the case when rillf (K3 = 0 
corresponding to a homeotropic anchorage of the 
molecules), we have 

and 

K,V2(S)  - K2SV2(#S). 6 9  a j  
6 4  ad) 
-=-- 

The coefficients Mand y are, respectively, related to the 
translational and rotational mobilities and are positive. 

In a following section, we will show, through a 
numerical example, the influence of a planar anchorage 
(then, ri is in the plane of variations of # and S )  of the 
director on the phase separation processes. 

2.2. Short time behaviour of the phase Jepnration 
The system, prepared at a temperature at which it is in 

a homogeneous phase for all possible concentrations, is 
quenched at a fixed temperature, inside the demixing 
region. We suppose that it remains in the same orienta- 
tional state when it is taken up to the experiment 
temperature. We study the stability of the mixture with 
respect to small fluctuations of the order parameters. 
around their mean values. 

The homogeneous state is described by a pair of values 
(&, SO) and we define the associated infinitesimal 
fluctuations (66, SS) by 

$ = 4 0 + 6 #  (7) 

and 

and with S# + 40 and 6s  4 SO. 

around (40, SO) leads to 
A limited expansion of the free energy density f (4, S) 

with 

and 

(9) 

(10) 

Equation (12) determines the value of the orientational 
order parameter So, for a given mean concentration #o and 
a fixed temperature. 
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Figure 1. Variation of the free energy density as a function of 
S, the orientational order parameter, at a fixed temperature 
and various concentrations. 

Taking into account the shape of the free energy density 
(expression (2)) ,  one can find three extreme situations 
(see figure 1) with respect to S 

S, = 0, (13) 

and 

S3=-(l 3B + J [ 1 -  32C(A$o + D )  
8C$O 9B240 

We must note that we work on a free energy density 
surface f ( $ , S )  and as we choose an equilibrium initial 
state, the concentration $0 is correlated to the orientational 
order parameter SO which minimizes the free energy 
density (equations (13), (14), (15)). Then, to give some 
idea of the dynamical behaviour of the system, it is 
helpful to visualize the free energy curve corresponding 

to these solutions. Quite simple trends can be obtained 
through this representation. 

Then, we choose, for temperatures at which the phase 
separation proceeds, the SO value corresponding to the 
absolute minimum of the free energy density (see 
figure 1); that means SO = S1 if $ < $t (isotropic states) and 
SO = S, if $ > $t (anisotropic states) (see figures 2 and 3). 

[&,$;I, [$1.$21 correspond to the binodal limits 
respectively, of the isotropic-isotropic and isotropic- 
anisotropic phase separations. 4s is the inflection point 
('spinodal point') of the anisotropic branch. At & there 

1 i I 

0 

Figure 2. Example of the phase diagram for a mesomorphic 
(A) hon-mesomorphic (B) mixture calculated from mean 
field theory [I51 with L&A = 2.5, LAILB = 2-5 and 
XLA(T,) = 3 (I and A are, respectively, the homogeneous 
isotropic and anisotropic phases; IA and I/A are respect- 
ively the isotropic-isotropic and isotropic-anisotropic 
biphases). 

@: 
Figure 3. Example of the free energy density at T/T, = 0.85 

(horizontal dashed line on figure 2; I and A are respectively 
the isotropic and anisotropic branches of the free energy 
density). 
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832 Y. Lansac et al. 

exists an equal probability of finding the mesomorphic 
compound in an isotropic or an anisotropic state. 

In Fourier space, the linearized equations (3) and (4) 
lead to 

with 

where, using the free energy density ( 2 ) ,  all, a22 and 5112 

are functions of 40, SO and the derivative of S with respect 
to 9 taken at the point (40, SO). 

The system, prepared at (40, So), is stable with respect 
to infinitesimal perturbations only if all the eigen values 
of the linear matrix (LA) are positive, and unstable if at 
least one eigen value is negative. Then, the boundary of 
the instability zone is given by the couples (40, So) which 
verify det (LA)  = 0. 

We neglect, in a first step, the term related to the spatial 
variations of the order parameters, for example, 
Kl = K2 = 0. 

Then, the boundary of the instability is 

;'Mk?(al la22  - a:2) = 0 (19) 

and we note %T = a1~c12~ - x : ~ ,  the total curvature of the 
free energy density surface. Then, the pair of initial values 
(90, SO) driving the system to an unstable state confirms 
$ T  s 0. 

In the special case when the mixture is prepared at high 
temperature, in the isotropic phase, and quenched to a 
lower temperature at which a phase separation can occur, 
S ( $ ) - S  1 - - 0. Then we have 

and, with the help of the expressions (20) and the 
hypothesis K ,  = K2 = 0, the linearized system of equations 

is rewritten 

where h&,, 6So are the initial infinitesimal perturbations of 
the order parameters around 40, So at t = 0. 

The instability zone verifies X I  1x22 < 0 and we note that 
the evolution of each of the two order parameters is 
independent (diagonal system, equation (22)). We can 
determine the short time behaviour of the system with the 
help of the generic case of a mesomorphichon-mesomor- 
phic binary mixture; the system is initially prepared at the 
reduced temperature TdT, (where T, i s  the pseudo-tran- 
sition temperature of the single mesomorphic component) 
and quenched to the temperature T+T, (sce figures 2 
and 3) .  

Various cases must be taken into account as a function 
of the initial mean concentration 40, but, in all cases 
X I  I > 0, since So implies that 40 is on the isotropic branch 
of the free energy density (with respect to 9). 

In the following, q5** is the concentration below which 
the system is in an isotropic phase and q5* the concen- 
tration above which the system i s  in an anisotropic phase 
(figure 1). 

6" < +**: The az2 curvature of the free energy density 
with respect to S is positive; then, from equations (22),  the 
orientational perturbations must decrease (isotropic state). 

The MI 1 curvature of the free energy density is negative 
only if the concentration 6 is in the isotropic-isotropic 
spinodal zone: then, the system is unstable with respect to 
small fluctuations of q5 and an isotropic-isotropic phase 
separation can occur with a spinodal decomposition 
dynamical process (Cahn-Hilliard) [20 1. 

> 4**: We have two sub-cases, according to 
whether the mean concentration $0 is lower or greater than 
4* (see figure 1): 

~ if  (b** < $0 < $*: the system is on the isotropic 
branch of the free energy density with respect to 4 
and S,  and then uI a22 are positive at the point 
(&,So = 0). From (22): we note that the two order 
parameter fluctuations decrease, keeping the system 
in an isotropic phase (in fact it is a metastable state 
which cannot be described by such a perturbative 
theory). 

- if 40 > q5*: i l l  I is always positive, but a22 becomes 
negative. Then, we are in a zone in which the 
orientational order parameter fluctuations must 
increase (equation (22)). 

This exponential growth during the first stages of the 
transition saturates in the next stages by the non-linear 
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Dynamics of phase separation 833 

terms (equation (3)), which leads the mixture into a new 
orientational state S& = S2 # 0, minimizing the free energy 
density solution of 

where S3 is the absolute minimum of the free energy 
density with 4 = 40 (see figure 1). 

Then, after the first instability, the mixture reaches an 
anisotropic, homogenous state ($0, S;) and we can again 
study the instability conditions of the system with respect 
to small perturbations. We should remember that SA is a 
minimum of the free energy, which implies that a22 is 
always positive. 

The boundaries of the instability zone, defined by 
gT < 0, can be obtained through all  negative. 

Then, we recover a case analogous to the non-meso- 
morphic mixture, which means that the system, in a 
spinodal zone, becomes unstable (negative curvature with 
respect to 4 of the free energy density). 

We can study the wavelength of textures appearing in 
the system during the first stages of the isotropic-an- 
isotropic phase separation, by taking into account the 
spatial variation terms. 

We calculate the eigen values w of the linear matrix 
(LA) which verifies (lengths are normalized by d K 2 :  
x + K4”x) 

B(k) -t V ( B 2  - 4C) 
2 

w2 - B(k)w + C(k) = O ~ W  + = 

For reasons of simplicity, we have substituted Sh 
by So. 

Being interested in the first stages of the separation, we 
have very different evolution laws for the two order 

- I I 

k m  k c  k 
Figure 4. C(k) as function of various parameters of the system: 

(a) q > 0 and %‘T > 0 and (b) any q and VT < 0. 

parameters (the conservative laws are different) and we 
can write, to a first approximation [21]  

-* 1, (27) 
Mk2 

7 
46which simplifies the study of the eigen values. They can 
be rewritten to the first order in MK21y 

I 

1 

w + is always positive since w + (k  = 0 )  = 2ya22 > 0 (orien- 
tational order parameter hypothesis) and the wavevectors 
k solutions, leading to o+ = 0, verify 

o + = 0 u yKz( 402k2 + ~ 2 2 ) ’  

+ MP(+oSoP + ~ 1 1 2 ) ~  = 0, (30 )  
which has no real solutions. 

Then, the only eigen value which can become negative 
as a function of k is o- . As a function of C(k),  o- can 
be rewritten 

The wavevectors leading to a negative w - are then the 
same as those giving C(k) negative (see figure 4) (we note 
that, since the various coefficients are related, a total 
positive curvature %‘T imposes a positive coefficient q). 

(i) 
o- is positive and then, the system never becomes 

unstable with respect to small fluctuations: the pairs 

> 0, %T > 0 * C(k) > OVk 
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834 Y. Lansac et al. 

(40, SO) taken such that WT > 0 corresponds to stable or 
metastable (a11 > 0) zones of the free energy density, 
verify d f Ids = 0 on the free energy surface. 

(ii) 

The wavevectors k, and k,, corresponding, respect- 
ively, to the instability boundary limits and to the 
wavevector minimizing o - , are defined by 

q > 0 or q < OWT < 0 * C(k) < 0 for k E 10, kc[ .  

and 

(32) 

(33) 

'Pt 'Po 

Figure 5.  Free energy density at TIT, = 0.67 for a binary 
mixture of a rod-like mesomorphic component (LA = 4) and 
a solvent (LB = 1) 

\ 

Figure 6. Free energy density at ZIT, = 0.8 for the same binary 
mixture as that in figure 5. 

with 

and 

(34) 

(35 )  

Then, the system is unstable with respect to small 
fluctuations when prepared at mean concentration-orienta- 
tional order parameter pairs (40, SO such that a1 I < 0) and 
the mean lengths of the nucleating zones are of the order 
of llk, during the first stages of the separation, the 
orientational order parameter being then a slave to the 
variations of concentration [22]. 

3. Numerical simulations 
The numerical solutions of the system of coupled 

non-linear partial derivative equations ( 1 )  is realized on a 
square grid 128 X 128, on a parallel supercomputer 
(Connection Machine CM-200), using an explicit finite 
difference scheme. The colour palette used is chosen such 
that the lower colour (yellow) corresponds to S = - 0.5 
and 4 = 0 and the higher colour (white) to S = 1 and $ = 1. 

We present here a few examples which describe the 
phase separation in a binary mixture composed of 
mesomorphic rod-like molecules ( L * = 4 )  and a non- 

Figure 7. Time evolution of the concentration in a mesomor- 
phichon-mesomorphic binary mixture (parameters of 
figure 5) at TIT, = 0.67 and 90 = 0.78. From left to right, 
from top to bottom: 1 = 0,150,221,371,577, 1601,1921, 
2544, 3316, 4636, 6889, 17607, 125506, 187885, 
686647, 863042 (expressed in time step unit 6t = 0.01). 

Time evolution of the orientational order parameter 
in the mesomorphic/non-mesomorphic mixture at 
TIT = 0.67 and &=0.78 at same times as in the 
preceding figure (the red and purple colours correspond, 
respectively, to isotropic and anisotropic zones). 

Time evolution of the concentration in a mesomor- 
phichon-mesomorphic binary mixture (parameters of 
figure 5 )  at TIT, = 0.8 and $0 = +**. From left to right, 
from top to bottom: r = 0, 279, 427, 1004, 2494, 6662, 
28832, 51 174 (expressed in time step unit 6t = 0.01). 

Time evolution of the orientational order parameter 
in the mesomorphichon-mesomorphic mixture at TI 
T, = 0.8 and &0= &** at the same times as for the 
concentration evolution (figure 11). 

Anisotropic time evolutions of the concentration 
(upper line) and the orientational order parameter (lower 
line) in the binary mixture of figure 5 with K 3  > 0 and lil\$, 
at TIT, = 0.67. From left to right: 1 = 174, 1184, 2821, 

Figure 14. The same evolutions as in figure 13, but at 
T/T,=O+3. From left to right: t=648, 4817, 16712, 

Figure 8. 

Figure 1 1 .  

Figure 12. 

Figure 13. 

4269 (6t= 0.01). 

76 122 (6t=0.01). 
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Figure 11. 

Figure 7. 

Figure 12. 

Figure 8. 

835 

Figure 14. 
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836 Y. Lansac ef al. 

mesomorphic solvent (Ls = l), induced by small 
fluctuations of the order parameters. 

In the first one, the system is initially prepared in an 
isotropic phase, with a mesomorphic component concen- 
tration 40 = 0.78, and quenched to the reduced tempera- 
ture T/T, = 0-67. We have a homeotropic anchorage 

The mean concentration &o has been chosen between 
4* = 0.7763 and & = 0.7919 (see figure 5 )  to illustrate the 
phase separation processes in two stages from an unstable 
state. This situation has been analytically described in the 
preceding section. 

Then, we see in figures 7, 8, 9 and 10 that the phase 
separation occurs in two stages: the first stage corresponds 
to the orientational order parameter instability (isotropic- 
anisotropic phase transition) at a constant concentration 4" 
(independent of time evolution) and the second one, to a 
'classical' phase separation (spinodal decomposition), the 
concentration inducing variations of the orientational 
order parameter. 

We verify on numerical sections of the order parameters 
(see figures 9 and 10) that, after the first stages governed 
by the time variations of S, the evolutions of the two order 
parameters are strongly correlated, the orientational order 
parameter being, in the later stages, a slave of the 
Concentration variations. 

We must note in this first example, that, after the first 
stage, the system reached an unstable state, but the phase 
separation patterns are not interconnected zones, because, 
the concentration being a conservative order parameter, 
these textures appear only when d," 2 (4L + 42)/2 (where 
41 and $2 are the binodal points). 

In the second example, we initially prepare the system 
at a concentration +** (see figure 6 )  in a homogeneous 
stable anisotropic phase (homeotropic anchorage) and 
quench it to a reduced temperature TIT, = 0.8, at which it  
is in an unstable state, both with respect to concentration 
d, and degree of orientation S (see figure 1). 

Thus, the phase separation takes place by intercon- 
nected zones and the variation of the orientational order 
parameter is always a slave of variation in concentration. 
The patterns are, as in the first example, spatially isotropic, 
since the anchorage is homeotropic (anisotropic effects are 
perpendicular to the plane of variation) (see figures 1 1  
and 12). 

Then, we study the same system, at these two 
temperatures, with a planar anchorage, the director being 
along the y direction. Here, we have taken a positive K3 

value. Thus, we find again the process of phase separation 
in two stages (T/T, = 067)  and the pattern of intercon- 
nected areas (T/T, = 04) ,  but with a large anisotropy 
oriented in the direction of the director, as observed 
experimentally 161 (see figures 13 and 14). 

In the case when K3 is negative, the direction of growing 

(Ki = 0). 

patterns is orthogonal to the director. This seems to be the 
case in recent small angle neutron scattering experiments 
made on polyester mixtures [23]. 

Figure 9. Time evolution of the concentration section along x 
for the mesomorphic/non-mesomorphic binary mixture 
TIT, = 0-67 and 4" = 0.78 (the horizontal lines correspond 
to the two binodal values). 

Figure 10. Time evolution of the orientational order pasametcr 
section along .Y for the mesomorphiclnon-mesomorphic 
binary mixture at TlT, = 0.67 and b0 = 0.78 (the horizontal 
lines correspond to the isotropic S= S,  = 0 and the 
anisotropic S = S 3  values). 
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Dynamics of phase separation 837 

4. Conclusions 
In the present work, we have derived a coupled system 

of non-linear partial derivative equations in the case of a 
mesomorphichon-mesomorphic binary mixture, from an 
expression of the functional coarse-grained free energy 
derived in previous work. Then we studied multiple 
components mixtures composed of small molecule sol- 
vent, conventional polymers or mesomorphic molecules 
or macromolecules. 

These equations are of the Ginzburg-Landau type for 
the non-conservative scalar orientational order parameter 
and of the Cahn-Hilliard type for the conservative order 
parameter (the concentration of the mesomorphic spe- 
cies). 

We have shown that in particular zones of the phase 
diagram (special concentrations) and during the early 
stages, the demixing occurs in two stages, a phase 
transition followed by a phase separation. During the 
second stage, where the orientational order parameter S is 
a slave of the concentration variations, we note the 
existence of a critical wavevector above which the phase 
separation cannot occur. 

We illustrate the two stage behaviour of the dynamical 
process with the help of numerical simulations of this set 
of equations and we qualitatively enlighten the importance 
of non-linear terms at longer times. 

In future work, we will quantitatively study the phase 
separation in mesomorphichon-mesomorphic binary 
mixtures and the time evolution of the structure factor, 
with the help of numerical simulations, in order to make 
comparisons with recent small angle neutron and light 
scattering experiments. 

We will also take into account the director variations in 
the system by substitution of the scalar orientational order 
parameter S by a tensorial one, Qij = S/2(3ninj - 6ij) 
describing the coupling between S and ii (141. 

We thank the Conseil Regional Provence-Alpes-CGte 
d'Azur for financial support in order to use the computers 
of the Centre Rkgional de Calcul et TklCcommunication 

Scientifique and INRIA Sophia-Antipolis where the 
calculations have been performed. 
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